p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23⋊1Q8, C24.5C22, C23.76C23, (C2×C4).14D4, C2.5C22≀C2, (C22×Q8)⋊1C2, C22.69(C2×D4), C2.6(C22⋊Q8), C22.20(C2×Q8), C2.5(C4.4D4), C2.C42⋊10C2, C22.36(C4○D4), (C22×C4).25C22, (C2×C22⋊C4).7C2, SmallGroup(64,74)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊Q8
G = < a,b,c,d,e | a2=b2=c2=d4=1, e2=d2, eae-1=ab=ba, dad-1=ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 181 in 101 conjugacy classes, 39 normal (7 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C23, C22⋊C4, C22×C4, C2×Q8, C24, C2.C42, C2×C22⋊C4, C22×Q8, C23⋊Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C22≀C2, C22⋊Q8, C4.4D4, C23⋊Q8
Character table of C23⋊Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | complex lifted from C4○D4 |
ρ21 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
(2 26)(4 28)(5 32)(6 16)(7 30)(8 14)(9 15)(10 29)(11 13)(12 31)(18 24)(20 22)
(1 21)(2 22)(3 23)(4 24)(5 15)(6 16)(7 13)(8 14)(9 32)(10 29)(11 30)(12 31)(17 27)(18 28)(19 25)(20 26)
(1 25)(2 26)(3 27)(4 28)(5 9)(6 10)(7 11)(8 12)(13 30)(14 31)(15 32)(16 29)(17 23)(18 24)(19 21)(20 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 10 3 12)(2 9 4 11)(5 28 7 26)(6 27 8 25)(13 20 15 18)(14 19 16 17)(21 29 23 31)(22 32 24 30)
G:=sub<Sym(32)| (2,26)(4,28)(5,32)(6,16)(7,30)(8,14)(9,15)(10,29)(11,13)(12,31)(18,24)(20,22), (1,21)(2,22)(3,23)(4,24)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,27)(18,28)(19,25)(20,26), (1,25)(2,26)(3,27)(4,28)(5,9)(6,10)(7,11)(8,12)(13,30)(14,31)(15,32)(16,29)(17,23)(18,24)(19,21)(20,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10,3,12)(2,9,4,11)(5,28,7,26)(6,27,8,25)(13,20,15,18)(14,19,16,17)(21,29,23,31)(22,32,24,30)>;
G:=Group( (2,26)(4,28)(5,32)(6,16)(7,30)(8,14)(9,15)(10,29)(11,13)(12,31)(18,24)(20,22), (1,21)(2,22)(3,23)(4,24)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,27)(18,28)(19,25)(20,26), (1,25)(2,26)(3,27)(4,28)(5,9)(6,10)(7,11)(8,12)(13,30)(14,31)(15,32)(16,29)(17,23)(18,24)(19,21)(20,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10,3,12)(2,9,4,11)(5,28,7,26)(6,27,8,25)(13,20,15,18)(14,19,16,17)(21,29,23,31)(22,32,24,30) );
G=PermutationGroup([[(2,26),(4,28),(5,32),(6,16),(7,30),(8,14),(9,15),(10,29),(11,13),(12,31),(18,24),(20,22)], [(1,21),(2,22),(3,23),(4,24),(5,15),(6,16),(7,13),(8,14),(9,32),(10,29),(11,30),(12,31),(17,27),(18,28),(19,25),(20,26)], [(1,25),(2,26),(3,27),(4,28),(5,9),(6,10),(7,11),(8,12),(13,30),(14,31),(15,32),(16,29),(17,23),(18,24),(19,21),(20,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,10,3,12),(2,9,4,11),(5,28,7,26),(6,27,8,25),(13,20,15,18),(14,19,16,17),(21,29,23,31),(22,32,24,30)]])
C23⋊Q8 is a maximal subgroup of
C42.162D4 C42.163D4 C23.304C24 C24.262C23 C24⋊4Q8 C24.267C23 C23.350C24 C23.352C24 C24.279C23 C23.359C24 C24.283C23 C24.285C23 C23.369C24 C23.372C24 C23.377C24 C23.388C24 C23.391C24 C23.392C24 C24.313C23 C24.315C23 C23.432C24 C23.457C24 C24.332C23 C23.461C24 C42.173D4 C24.583C23 C23.472C24 C24.338C23 C42.178D4 C24.346C23 C42.182D4 C42.183D4 C42.184D4 C24.355C23 C42⋊26D4 C23.514C24 C24⋊5Q8 C42.187D4 C42⋊29D4 C42.189D4 C42.192D4 C24.374C23 C24.592C23 C42.193D4 C23.550C24 C23.553C24 C42⋊32D4 C24.378C23 C24.379C23 C23.570C24 C23.574C24 C23.576C24 C24.385C23 C23.581C24 C23.584C24 C24.393C23 C24.394C23 C23.592C24 C24.403C23 C23.600C24 C23.602C24 C24.412C23 C23.612C24 C23.616C24 C24.418C23 C24.421C23 C23.631C24 C23.636C24 C23.637C24 C24.428C23 C23.645C24 C23.651C24 C23.654C24 C23.659C24 C23.660C24 C23.663C24 C23.664C24 C23.675C24 C24.450C23 C23.685C24 C23.688C24 C23.698C24 C24.456C23 C23.708C24 C23.714C24 C23.716C24 C42⋊34D4 C42.200D4 C23.724C24 C23.730C24 C23.731C24 C23.732C24 C23.735C24 C23.738C24 C24⋊6Q8 C23.741C24 C24.A4
C24.D2p: C23.Q16 C23⋊2SD16 C23⋊Q16 C24.12D4 C23⋊2Dic6 C23⋊Dic10 C23⋊Dic14 ...
C2p.C22≀C2: C23.288C24 C23.309C24 C24.565C23 C24.360C23 (C22×S3)⋊Q8 (C22×Q8)⋊9S3 (C2×C4).20D20 (C22×D5)⋊Q8 ...
C23⋊Q8 is a maximal quotient of
C42.8D4 C24⋊Q8
(C2×C4).D4p: (C2×D4)⋊Q8 (C22×S3)⋊Q8 (C2×C4).20D20 (C2×C4).20D28 ...
C24.D2p: C24.5Q8 C23⋊2Dic6 C23⋊Dic10 C23⋊Dic14 ...
(C22×C4).D2p: C24.632C23 C24.636C23 (C2×Q8)⋊Q8 C4⋊C4.84D4 C4⋊C4.85D4 (C2×D4)⋊2Q8 (C2×Q8)⋊2Q8 C24⋊2Q8 ...
Matrix representation of C23⋊Q8 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 3 |
0 | 0 | 0 | 0 | 0 | 3 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 4 | 3 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,2,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,3,3],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,4,0,0,0,0,0,3] >;
C23⋊Q8 in GAP, Magma, Sage, TeX
C_2^3\rtimes Q_8
% in TeX
G:=Group("C2^3:Q8");
// GroupNames label
G:=SmallGroup(64,74);
// by ID
G=gap.SmallGroup(64,74);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,2,48,121,55,362,332]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=1,e^2=d^2,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations
Export